Errata 1029

ERRATUM 2

The following are corrections to the paper titled "Accurate Transport Properties and Second Virial Coefficients for Helium Based on a State-of-the Art Interatomic Potential," by M. J. Slaman and R. A. Aziz, that appeared in the *International Journal of Thermophysics*, Vol. 12, No. 5, 1991.

The corrections are to Table XII (page 849) and are made by the authors upon finding mistakes in their calculations. For convenience, the entire corrected table is presented below.

Table XII. Coefficients of the Interpolating Functions for $\eta(T)^a$

	1.2-5 K	5–100 K	100-6000 K
-		³He	
A	-0.60359370	0.21449313	-0.42106612
В	0.10577436×10^{1}	-0.50681082	0.40346235
C	-0.13011422	0.47343581	$0.47935548 \times 10^{-1}$
D	-0.35119378	$-0.87012413 \times 10^{-1}$	$-0.44220126 \times 10^{-2}$
E	0.15023389	$0.59963177 \times 10^{-2}$	$0.21855359 \times 10^{-3}$
$N_{\mathfrak{p}}$	24	20	60
SD (%)	0.1156	0.1555	0.0100
Max. dev. (%)	0.2696	0.4845	0.0549
		⁴He	
Á	$-0.10329894 \times 10^{1}$	$-0.17374891 \times 10^{1}$	-0.31265481
В	-0.43415847	0.17019257×10^{1}	0.41787461
\boldsymbol{C}	0.15014701×10^{1}	-0.40931299	$0.45643739 \times 10^{-1}$
D	-0.51553730	$0.70062105 \times 10^{-1}$	$-0.42659249 \times 10^{-2}$
E	$0.28683689 \times 10^{-1}$	$-0.44539146 \times 10^{-2}$	$0.21477875 \times 10^{-3}$
$N_{\mathtt{p}}$	24	20	59
SD (%)	0.2762	0.0921	0.0076
Max. dev (%)	0.6554	0.2836	0.0426

^a For each temperature range we list the number of points, $N_{\rm p}$, used to generate the interpolating function from a least-squares fit to values calculated directly from the potential. The standard percentage deviation and maximum percentage deviation of the $N_{\rm p}$ empirical values from the values calculated directly from the potential are also listed. $\eta(T)$ is in units of $\mu Pa \cdot s$.